variational procedure - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

variational procedure - vertaling naar russisch

MATHEMATICAL METHODS USED IN BAYESIAN INFERENCE AND MACHINE LEARNING
Variational bayes; Variational Bayes; Variational Bayesian method; Variational inference; Variational free energy
  • Pictorial illustration of coordinate ascent variational inference algorithm by the duality formula<ref name=Yoon2021/>

variational procedure      

математика

вариационный метод

minimum principle         
DIFFERENTIAL CALCULUS ON FUNCTION SPACES
Variational methods; Variational calculus; Variational Calculus; Minimum principle; Calculus of variation; Strong extrema; Variational Method; Calculus of Variations; Applications of the calculus of variations; Variational method; Variation calculus; Variational problem; Variational formulation

математика

принцип минимума

variational         
WIKIMEDIA DISAMBIGUATION PAGE
Variational (disambiguation)

[ve(ə)ri'eiʃ(ə)nəl]

общая лексика

вариационный

прилагательное

редкое выражение

вариантный

относящийся к изменениям

колебаниям и пр.

Definitie

civil procedure
n. the complex and often confusing body of rules and regulations set out in both state (usually Code of Civil Procedure) and federal (Federal Code of Procedure) laws which establish the format under which civil lawsuits are filed, pursued and tried. Civil procedure refers only to form and procedure, and not to the substantive law which gives people the right to sue or defend a lawsuit. See also: civil civil action civil code civil law

Wikipedia

Variational Bayesian methods

Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning. They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as might be described by a graphical model. As typical in Bayesian inference, the parameters and latent variables are grouped together as "unobserved variables". Variational Bayesian methods are primarily used for two purposes:

  1. To provide an analytical approximation to the posterior probability of the unobserved variables, in order to do statistical inference over these variables.
  2. To derive a lower bound for the marginal likelihood (sometimes called the evidence) of the observed data (i.e. the marginal probability of the data given the model, with marginalization performed over unobserved variables). This is typically used for performing model selection, the general idea being that a higher marginal likelihood for a given model indicates a better fit of the data by that model and hence a greater probability that the model in question was the one that generated the data. (See also the Bayes factor article.)

In the former purpose (that of approximating a posterior probability), variational Bayes is an alternative to Monte Carlo sampling methods—particularly, Markov chain Monte Carlo methods such as Gibbs sampling—for taking a fully Bayesian approach to statistical inference over complex distributions that are difficult to evaluate directly or sample. In particular, whereas Monte Carlo techniques provide a numerical approximation to the exact posterior using a set of samples, variational Bayes provides a locally-optimal, exact analytical solution to an approximation of the posterior.

Variational Bayes can be seen as an extension of the expectation-maximization (EM) algorithm from maximum a posteriori estimation (MAP estimation) of the single most probable value of each parameter to fully Bayesian estimation which computes (an approximation to) the entire posterior distribution of the parameters and latent variables. As in EM, it finds a set of optimal parameter values, and it has the same alternating structure as does EM, based on a set of interlocked (mutually dependent) equations that cannot be solved analytically.

For many applications, variational Bayes produces solutions of comparable accuracy to Gibbs sampling at greater speed. However, deriving the set of equations used to update the parameters iteratively often requires a large amount of work compared with deriving the comparable Gibbs sampling equations. This is the case even for many models that are conceptually quite simple, as is demonstrated below in the case of a basic non-hierarchical model with only two parameters and no latent variables.

Vertaling van &#39variational procedure&#39 naar Russisch